Хакатон по глубинному обучению (deep learning)

Хабрахабр / Лучшие публикации за сутки.

Глубокое обучение (deep learning) бурно развивается, и стабильно растёт список новых прорывов и областей его применения (обработка изображений, распознавание речи, обучение с подкреплением, нейромашинный перевод, вычислительная фармацевтика 1 и 2 и далее). Как следствие, крупнейшие мировые IT-компании (Google, Facebook, Baidu и многие другие) продолжают активно внедрять технологии глубокого обучения, создавая новые рабочие места.

Тем временем, возникает настойчиво поддерживаемая журналистами иллюзия, что вот-вот технологии глубокого обучения решат проблему создания искусственного интеллекта [1, 2, 3, 4]. Но реальность такова, что круга нерешённых задач хватит ещё на много диссертаций (см. презентация Я. Лекуна (Yann LeCun) на CVPR15, заметка Ю. Шмидтхубера (Jürgen Schmidhuber), пост Б. Гёртцеля (Ben Goertzel), уже упомянутые в статье на Хабре работы Дж. Хинтона (Geoffrey Hinton)). Осознавая этот факт, специалисты в машинном обучении стремятся повысить свою квалификацию; как показатель, на 100 мест в летней школе по глубокому обучению Ёшуа Бенжио (Yoshua Bengio) в этом году было более 600 заявок.

Наверно, не многие из читателей Хабра имели возможность попасть на школу Ё. Бенжио, однако, получить опыт и знания по глубокому обучению можно будет в процессе интенсивного недельного соревнования (хакатона), которое пройдет в Москве в июле. У участников хакатона будет возможность прослушать лекции от ведущих мировых специалистов, применить полученные навыки на практике и выиграть призы.

О том как это будет

Добавить комментарий