Представление движений в 3D моделировании: интерполяция, аппроксимация и алгебры Ли

Хабрахабр / Лучшие публикации за сутки.
В этой статье мне бы хотелось рассказать об одном интересном математическом приеме, который будучи весьма интересным и полезным мало известен широкому кругу людей, занимающихся компьютерной графикой.

Сколько существует разных способов представить обыкновенный поворот в трехмерном пространстве? Большинство людей, когда-либо занимавшихся 3D-графикой или 3D-моделированием, сходу назовут три основных широко распространенных варианта:

  • Матрица поворота 3×3;
  • Задание поворота через углы Эйлера;
  • Кватернионы.

Люди с богатым опытом добавят сюда почему-то не пользующийся популярностью четвертый пункт:

  • Ось поворота и угол.

Мне бы хотелось рассказать о пятом способе представления вращений, который симпатичен тем, что удобен для параметризации, позволяет эффективно строить полиномиальные аппроксимации этих параметризаций, проводить сферическую интерполяцию, и главное, универсален — с минимальными изменениями он работает для любых видов движений. Если вам когда-либо был нужен метод, который позволял бы легко сделать «аналог slerp, но не для чистых вращений, а для произвольных движений, да еще и с масштабированием», то читайте эту статью. Читать дальше →

Добавить комментарий