[Перевод] Когда «О» большое подводит

Хабрахабр / Лучшие публикации за сутки.

"О" большое — это отличный инструмент. Он позволяет быстро выбрать подходящую структуру данных или алгоритм. Но иногда простой анализ "О" большого может обмануть нас, если не подумать хорошенько о влиянии константных множителей. Пример, который часто встречается при программировании на современных процессорах, связан с выбором структуры данных: массив, список или дерево.

Память, медленная-медленная память

В начале 1980-х время, необходимое для получения данных из ОЗУ и время, необходимое для произведения вычислений с этими данными, были примерно одинаковым. Можно было использовать алгоритм, который случайно двигался по динамической памяти, собирая и обрабатывая данные. С тех пор процессоры стали производить вычисления в разы быстрее, от 100 до 1000 раз, чем получать данные из ОЗУ. Это значит, что пока процессор ждет данных из памяти, он простаивает сотни циклов, ничего не делая. Конечно, это было бы совсем глупо, поэтому современные процессоры содержат несколько уровней встроенного кэша. Каждый раз когда вы запрашиваете один фрагмент данных из памяти, дополнительные прилегающие фрагменты памяти будут записаны в кэш процессора. В итоге, при последовательном проходе по памяти можно получать к ней доступ почти настолько же быстро, насколько процессор может обрабатывать информацию, потому что куски памяти будут постоянно записываться в кэш L1. Если же двигаться по случайным адресам памяти, то зачастую кэш использовать не получится, и производительность может сильно пострадать. Если хотите узнать больше, то доклад Майка Актона на CppCon — это отличная отправная точка (и отлично проведенное время).

Читать дальше →

Добавить комментарий