Обзор основных методов Deep Domain Adaptation (Часть 1)

Хабрахабр / Лучшие публикации за сутки.

Развитие глубоких нейронных сетей для распознавания изображений вдыхает новую жизнь в уже известные области исследования в машинном обучении. Одной из таких областей является доменная адаптация (domain adaptation). Суть этой адаптации заключается в обучении модели на данных из домена-источника (source domain) так, чтобы она показывала сравнимое качество на целевом домене (target domain). Например, source domain может представлять собой синтетические данные, которые можно «дёшево» сгенерировать, а target domain — фотографии пользователей. Тогда задача domain adaptation заключается в тренировке модели на синтетических данных, которая будет хорошо работать с «реальными» объектами.

В группе машинного зрения Vision@Mail.Ru мы работаем над различными прикладными задачами, и среди них часто встречаются такие, для которых мало тренировочных данных. В этих случаях сильно может помочь генерация синтетических данных и адаптация обученной на них модели. Хорошим прикладным примером такого подхода является задача детектирования и распознавания товаров на полках в магазине. Получение фотографий таких полок и их разметка довольно трудозатратны, зато их можно достаточно просто сгенерировать. Поэтому мы решил глубже погрузиться в тему доменной адаптации.

Читать дальше →

Добавить комментарий